[4.3] Molecular Shapes **TEXTBOOK: 183 - 188**

Drawing Molecules

- 1. central atom has least electronegativity, **H** is <u>**never**</u> the central atom
- 2. molecules tend to be <u>symmetrical</u>, like water molecule
- **3. covalent bonds** are represented by **pairs of dots** between two atoms
- 4. pairs of electrons forming <u>covalent bonds</u> can be represented by a <u>line</u> O=C=O

Drawing Molecules

5. number of **dots/lines** you draw must equal the **sum of the valence electrons** of all atoms in the molecule

6. octet rule refers to how elements generally prefer to form bonds so as to attain an octet (8) configuration, i.e. have **8** electrons in their valence shell (H and He have **2**)

7. Try to **satisfy octet rule** for all atom, if impossible - at least for outer **atoms**.

2.1 VSEPR

Use VSEPR

(<u>V</u>ALENCE <u>SHELL</u> <u>ELECTRON</u> <u>P</u>AIR <u>R</u>EPULSION) theory to predict the shape of molecules.

2.1 VSEPR

Remember, molecules are **3D structures**. Their geometric shape is determined by:

- electron repulsion electron pairs in bonds will orient <u>as far away</u> from each other as possible
- valence electrons these occupy space too so these will spread out evenly around the central atom

A - this is the **central atom** of the molecule (or portion of a large molecule being focused on).

A - this is the central atom of the molecule (or portion of a large molecule being focused on).
X - this letter represents the atoms attached to the central atom.

No distinction is made between atoms of different elements. For example, **AX**₄ can refer to **CH**₄ or to **CCI**₄.

A - this is the **central atom** of the molecule (or portion of a large molecule being focused on). X - this letter represents the **atoms** attached to the **central atom**. No distinction is made between atoms of different elements. For example, AX_{4} can refer to CH_{4} or to CCI_{4} . **E** - this stands for **nonbonding** electron **pairs**. For example, AX₂E₂can refer to H₂O

Examples:

 $AX_3E - NH_3$

 $AX_2E_2 - H_2O$

2.3 The Steric Number

(the # of lone pairs + bonded atoms) relates the **shape** of the **electron pairs** around a central atom

Steric number (GEOMETRY): 2=linear, 3=trigonal planar, 4=tetrahedral.

For water= AX_2E_2 steric number is 2+2=4 electron domains (2 in bonds and 2 in lone pairs).

- If each shape is **symmetrical**, the bond dipoles will cancel resulting in a **nonpolar** molecule.
- If a shape has **lone pairs** of electrons on the central atom, the shape is often **unsymmetrical**, the molecule is **polar**.

Lewis Structures in 3D

Molecular Structure **Movie Time!**

Lewis Structures in 3D

These **normal lines** are used to represent bonds that lies **in the plane** of the drawing surface (i.e the computer screen, the paper, the chalkboard, etc.)

In order to represent bonds **projecting out** of this plane, we use "**dashed**" and "**wedged**" bonds.

2.4 Lewis Structures in 3D

•Dashed ''''' bonds are used to represent bonds that project backward (behind the drawing plane

•Wedged bonds are used to represent bonds that project outward (*in front* of the drawing plane).

a) CCI.

C in the middle total # of valence electrons = 4 + 4(7) = 32 b) NH₃

N in the middle total # of valence electrons = 5 + 3(1) = 8

c) C₂H_e

two C's in the middle total # of valence electrons = 2(4) + 6(1) = 14 d) CO2

a) CCI4

C in the middle

total # of valence electrons = 4 + 4(7) = 32

b) NH3

N in the middle total # of valence electrons = 5 + 3(1) = 8

c) C₂H_e

two C's in the middle total # of valence electrons = 2(4) + 6(1) = 14 d) CO2

a) CCI4

C in the middle

total # of valence electrons = 4 + 4(7) = 32

c) C₂H_e

two C's in the middle total # of valence electrons = 2(4) + 6(1) = 14 b) NH;

N in the middle total # of valence electrons = 5 + 3(1) = 8

d) CO2

a) CCI4

C in the middle

total # of valence electrons = 4 + 4(7) = 32

c) C₂H_e

two C's in the middle total # of valence electrons = 2(4) + 6(1) = 14

$$\begin{array}{cccc} H H & H H & H H \\ H H & H H & H H \\ H H & H H & H \end{array}$$

b) NH;

N in the middle total # of valence electrons = 5 + 3(1) = 8

d) CO2

a) CCI4

C in the middle

total # of valence electrons = 4 + 4(7) = 32

c) C₂H_e

two C's in the middle total # of valence electrons = 2(4) + 6(1) = 14

b) NH;

N in the middle total # of valence electrons = 5 + 3(1) = 8

d) CO2

		Atoms Bonded to Central Atom	Lone Pairs of Electrons Bonded to Central Atom	Bond Angle	Example		
Name	Shape				Formula	Lewis Structure Represented in 3D	
Linear	••	2	0	180°	BeH ₂	Н—Ве—Н	
<u>Trigonal</u> planar		3	0	120°	BF₃	······································	
Tetrahedral		4	0	109.5°	CH₄	H H H	
<u>Trigonal</u> pyramidal		3	1	107°	NH₃	H ^{WWWWN} N H	

Angular	2	2	104.5°	H₂O	н. Н. Н
Trigonal bipyramidal	5	0	90° 120° 180°	PCl₅	
Octahedral	6	0	90° 180°	SF₅	· · · · · · · · · · · · · · · · · · ·

Steric number	Number of Bond pairs	Number of Lone pairs	Formula	St mol	nape of lecule	Approximate Bond angles	Examples
1	1	0	AX	Linear	A -8	-	ClF, BrF, BrCl, HF, O ₂
2	2	0	AX ₂	Linear	<mark>⊗—</mark> &—&	180°	BeCl_2 , HgCl_2 , CO_2
3	3	0	AX3	Trigonal planar	×	120°	BF ₃ , CO ₃ ²⁻ , NO ₃ ⁻ , SO ₃
	2	1	AX ₂ E	Angular		120°	SO ₂ , SnCl ₂ , O ₃ , NSF, NO ₂ ⁻

		4	0	AX4	Tetrahedral	×	109°28'	CH ₄ , SiCl ₄ , NH ₄ ⁺ , PO4 ³⁻ , SO4 ²⁻ , ClO4 ⁻
	4	3	1	AX₃E	Trigonal pyramidal		around 109°28'	NH3, PCl3, XeO3
		2	2	AX ₂ E ₂	Angular		around 109°28'	H ₂ O, SCl ₂ , Cl ₂ O, OF ₂

Homework